In our modelled pathway, the NECP is taken as a baseline for electricity and heat demand, as well as some non-coal production capacity.
The following modifications are made:
Power capacity: Czech coal capacity (both electricity-only and CHP) was required to fall by 40% by 2025 and 100% by 2030. Technologies with limited scope for development before 2030 were set according to the NECP, i.e., no new nuclear, and only small changes in hydropower (and pumped storage), bioenergy, waste incineration, and interconnection. This meant coal was largely replaced by an optimised combination of solar, wind, and flexible gas generation. We produced an additional scenario to explore the impacts of adding battery storage (equivalent to 20% of solar capacity).
RES limits: We impose upper limits on wind and solar deployment, in an attempt to remain within economic and territorial constraints. Broadly, we assume maximum deployment rates in agreement with expert estimates over the 2020-25 period, but allow acceleration in the second half of the decade. Onshore wind capacity was limited to 1GW by 2025 and 4GW by 2030. The necessary additions over the next 5 years (760MW) are a significant scale-up for Czechia, but other EU countries with similar resource potential are achieving more. According to Eurostat, between 2013-2018 Austria added 1458MW, Belgium 1003MW, and Denmark 872MW. Solar capacity was limited to 4.8GW by 2025 and 10GW by 2030. Between 2009-2011 Czechia added 1.5GW, exceeding the rate required between 2020-2030 to reach the upper limits set.
Heat demand: We use national statistics and projections in the Czech NECP to estimate the shortfall in heat supply as a consequence of phasing-out coal CHP plants, in both the district heating system and dedicated units for own-consumption. In addition to this, we incorporated estimates of additional savings that could be achieved by more ambitious building renovation. These estimates combine to reduce the heat demand in scope for the model by approximately one third, from 60PJ to 40PJ between 2020 and 2030. Current non-coal heat production was assumed to evolve according to the NECP, and was not modelled.
Heat production: Before optimising the replacement of coal CHP heat, we gathered estimates for the potential of waste heat recovery. Subsequently we subtracted 11PJ of heat demand, assuming a baseload production profile. The remaining supply is optimised by the model, which selects between large heat pumps, gas/biomass CHP, and gas/biomass heat-only boilers. Due to uncertainties about the end-user requirements of own-consumers, we required the model to source at least 15PJ from thermal combustion.