Global Electricity Review 2023 | Ember

Chapter 6:

Country and Region Deep Dives

In this chapter

China
6.1
Read
United States
6.2
Read
India
6.3
Read
European Union
6.4
Read
Japan
6.5
Read
Russia
6.6
Read
South Korea
6.7
Read
Saudi Arabia
6.8
Read
Indonesia
6.9
Read
Iran
6.10
Read

Analysis of the ten largest power sector emitters in 2022

This chapter provides a deeper analysis of what has happened in the countries and regions that are the world’s top ten absolute CO2 emitters. Collectively, they are responsible for around 80% of global emissions from the electricity sector. 

We have ordered the sections according to the amount of carbon dioxide emissions produced from the electricity sector of the given country or region in 2022, or the previous year if no data is available.

China

Last year, China produced the most CO2 emissions of any power sector in the world. At 4,694 million tonnes of CO2, China accounted for 38% of total global emissions from electricity generation. In 2021, 19% of China’s final energy consumption came from electricity: this is likely to grow rapidly with the electrification of other sectors like transport and heating. Given the scale of China’s emissions, rapid decarbonisation of the global power sector will not be possible without the coal to clean power transition in China. 

Although solar and wind have been the main drivers of additional power production in China, reliance on coal remains high. Coal alone made up 61% of China’s electricity mix last year (5,420 TWh). Taking gas (3.1%, 276 TWh) and other fossil fuels into consideration, all fossil fuels accounted for 64% of China’s electricity in 2022. Solar and wind together contributed 14% of the electricity mix (1,241 TWh). The share of wind (9.3%) is almost twice that of solar (4.7%). Other clean power sources in China include hydro (15%), nuclear (5%) and bioenergy (2%).

Due to its high reliance on fossil fuels, China’s power sector emissions intensity (530 gCO2/kWh) was 22% higher than the global level of 436 gCO2/kWh. Moreover, China’s per capita demand for power (6.2 MWh) was almost two times higher than the global level (3.6 MWh). As a result, China’s per capita power sector emissions (3.3 tonnes CO2) were more than double the global average of 1.6 tonnes in 2022.

China is the world’s biggest coal power country but also the leader in absolute wind and solar generation. Choices being made about energy in the country have worldwide implications. Whether peaking fossil globally happens in 2023 is largely down to China.

Change in 2022

China’s power demand increased by 4.4% in 2022, below the average growth rate since 2010 (6.5%), as China’s zero-COVID policy continued to impact demand. Despite this, China’s demand increase of 374 TWh was more than half the total global demand increase.

China’s clean power growth has been strong, but below the rise in demand. As a result, coal generation hit an all-time high in absolute terms this year, rising by 1.5% (+81 TWh) to meet 22% of the overall demand increase. However, strong growth in clean power pushed the share of coal (61%) down by two percentage points compared to 2021. Gas generation rose by 1.3% (+3.5 TWh). 

In 2022, wind and solar generation saw enormous 26% growth (+259 TWh), with China accounting for almost half of the world’s additional generation from the two sources. The year-on-year rise in solar and wind power met 69% of China’s net demand increase in 2022. While solar and wind grew at a similar rate, the share of wind (9.3%, 824 TWh) was still about two times higher than solar (4.7%, 418 TWh).

Nuclear generation grew 2.5% (+10 TWh), significantly below the average annual growth rate in the last decade (+16%). Hydro was up by only 1.4% (+18 TWh) amid droughts in the summer and winter, and had its lowest share in generation since 2011 (15%).

 

Long-term trend

Over the last two decades, power demand rose sixfold in China. Total power demand in 2022 was 8,840 TWh, a huge jump from 1,347 TWh in 2000. To meet the scale of China’s demand rise, coal generation has risen steadily, hitting a record high in 2022. As a result, China’s total power sector emissions in 2022 were five times higher than in 2000 (+415%, +3,872 MtCO2). Global power sector emissions rose much less, increasing by 78%. 

Despite this rise in power demand, the share of coal has fallen by 17 percentage points from 78% in 2000 to 61% of China’s electricity in 2022. Coal’s share has been steadily declining in the last two decades thanks to rapid deployment of clean power sources. In absolute terms, however, coal generation in 2022 (5,420 TWh) was five times higher than it was in 2000 (1,060 TWh). 

The rate of solar and wind growth in China is staggering. In 2015, wind and solar share was 3.9%. Since then, wind and solar have seen a fivefold increase in absolute generation, accounting for nearly half of the global change in wind and solar generation and reaching 14% of China’s electricity generation. 

China’s emissions intensity of electricity generation has declined by 21% since 2000, reaching 530 gCO2/KWh in 2022. However, China’s total power sector emissions (4,694 MtCO2) increased five times since 2000 due to rising demand and increased coal generation.

 

Progress towards net zero

China needs to generate all its electricity from clean sources by 2040 to achieve a net zero emissions power sector, per the IEA Net Zero Emissions scenario. That would mean reducing power sector emissions by 261 million tonnes of CO2 every year until 2040. Since 2015, China’s power sector has added an average 177 million tonnes of CO2 emissions every year. Reversing this trend is a great challenge, but rapid build up of wind and solar generation has moved China closer to satisfying and exceeding new electricity demand with additional low carbon electricity rather than coal. Continuing this trend will be the key in the country’s power sector and energy transition.

In September 2020, President Xi Jinping announced that China will aim to peak CO2 emissions before 2030 and achieve carbon neutrality by 2060. The IEA declared that “a power sector dominated by renewables provides the foundation for China’s clean energy transition.” China’s 14th Five-Year Plan and new market reforms seek to prioritise these efforts. Impactful policies like ‘Whole-County Rooftop Solar’ (see chapter 3) helped push solar to new levels in 2022. In the short term, there is a huge opportunity for solar to grow even faster. Major new solar manufacturing plants came online in China in 2022, reportedly increasing annual manufacturing capacity by 66%, which far exceeds the expectations for solar panel demand in 2023.

United States

The United States has the world’s second most CO2-emitting power sector, responsible for 1,580 million tonnes of CO2 in 2022, or 13% of total global emissions from electricity generation.

The US generates around 60% of its electricity from fossil fuels: 19% (828 TWh) from coal, 39% (1,695 TWh) from gas and 0.9% (40 TWh) from other fossil fuels. Wind and solar now make up 15% (644 TWh) of the electricity mix, with the rest coming from nuclear (18%, 772 TWh), hydro (5.9%, 251 TWh) and bioenergy (1.2%, 52 TWh).

The US has an emission intensity of 368 gCO2/kWh, below the global average of 436 gCO2/kWh. Annual demand per capita is 13 MWh, more than three times the world average of 3.6 MWh. Per capita power sector emissions in the US are also nearly three times the world average, with 4.7 tonnes of CO2 per capita compared to 1.6 tonnes globally. 

As the second largest global power sector emitter, efforts to reduce emissions through the build up of wind, solar and other clean electricity sources can have a large impact on the global effort to achieve net zero by 2050.

The deployment of clean power is getting supercharged by the Inflation Reduction Act and Bipartisan Infrastructure Law. But the US still generates 60% of its electricity from fossil fuels, so there is a crucial need for more clean power. Coal power is already falling rapidly, and the US will soon see gas power fall rapidly. The US target for 100% clean power by 2035 is certainly within reach.

Change in 2022

In 2022, US power sector emissions rose slightly by 0.3% (+4.6 million tonnes of CO2), below the global rise of 1.3%.

US electricity demand increased by 3.4% in 2022 (+144 TWh). This was higher than the global demand change of 2.5%, and significantly higher than the US average demand growth rate of 0.4% for 2010-2021. The rise was in part due to air conditioning during extensive summer heatwaves.

Gas generation saw the largest absolute increase, rising 115 TWh (+7.3%). This replaced some coal, which fell by 70 TWh (-7.8%). Wind generation grew by 15% (+56 TWh) and solar grew by 25% (+41 TWh), together meeting 68% of the increase in demand. Other electricity generation sources saw smaller changes: nuclear fell by 0.9% (-6.6 TWh), hydro rose by 1.9% (+4.6 TWh), while bioenergy, other fossil generation and other renewables remained largely stable. Wind and solar’s shares increased slightly to 10.1% and 4.8% respectively. The share of gas also rose slightly to 39.5%. Coal had the largest change in share, falling 2.3 percentage points to generate 19.3% of electricity. Nuclear fell to 18%. The share of hydro and bioenergy remained stable.

 

Long-term trend

US electricity demand has grown by 13% (499 TWh) in the last two decades, from 3,836 TWh in 2000 to 4,335 TWh in 2022. Emissions intensity in 2022 (368 gCO2/kWh) was significantly below 2000 levels (533 gCO2/kWh), in part due to the recent build up of wind and solar as coal generation fell. Because of the cleaner grid, total annual power sector emissions decreased by 22% (-445 million tonnes of CO2) over the same period despite the increased demand.

Since the Paris Agreement in 2015, US power sector emissions have fallen by 14% (-248 million tonnes of CO2). Increased demand since 2015 has primarily been met by gas generation, which rose by 27% (+361 TWh). Gas generation also replaced some retiring coal plants. At the same time, wind grew by 128% (+244 TWh) and solar grew an astonishing 426% (+166 TWh), preventing an even larger rise of fossil generation. 

The US transition to wind and solar is happening faster than the global average. Wind and solar now account for 15% of electricity production, up from just 5.6% in 2015. Globally, the share of wind and solar increased from 4.6% to 12.1% in the same period.

 

Progress towards net zero

US power sector emissions need to fall to zero by 2035 from the current 1,580 million tonnes of CO2 to align with the IEA Net Zero Emissions scenario. To achieve this, emissions will need to fall by 122 million tonnes per year, more than three times as fast as the average decrease of 35 million tonnes annually since 2015.

The commitment by the United States to achieve ‘100 percent carbon pollution-free’ electricity by 2035 should move it towards that trajectory. The Inflation Reduction Act (IRA) of 2022 provides the stimulus to make that commitment a reality. It represents the single largest investment in climate and energy in American history, according to the US Department of Energy. In a report published this year, Evergreen Action and NRDC (Natural Resources Defense Council) presented new modelling that details how setting ambitious carbon pollution standards for new and existing power plants under the Clean Air Act would be a crucial next step.

India

India had the third largest power sector emissions in the world in 2022, behind China and the United States. In 2022, India produced 1,162 million tonnes of CO2, accounting for 9.4% of the world’s total power sector emissions. India’s per capita emissions, however, are half the global average (0.8 tCO2 vs. 1.6 tCO2).

India’s emissions are driven by high reliance on fossil fuels and a large population. The country has a low power demand per capita of 1.3 MWh, one third that of the global average (3.6 MWh). India’s electricity generation, however, is 45% more carbon intensive (632 gCO2/kWh) than the global average (436 gCO2 per kWh).

In 2022, India generated 77% (1,415 TWh) of its electricity from fossil fuels. Coal had the largest share at 74% (1,363 TWh), followed by gas (2.7%, 50 TWh), and other fossil (0.1%, 2.4 TWh). The share of wind and solar reached a record high of 9% (165 TWh), although still three percentage points behind the global average. Hydro generated 9.5% (175 TWh) of electricity, while nuclear and bioenergy accounted for 2.5% and 2%, respectively.

In 2022, India surpassed China to become the world’s most populous nation. As growth continues amid rapid economic development, so too will India’s need for electricity. Meeting that with clean electricity would mean growing clean sources quickly and at a vast scale. Electricity provided 17% of India’s final energy consumption in 2021, which is expected to increase as the electrification of sectors like transport, heating and industry accelerates.

India’s clean electricity transition journey has now reached a critical juncture. The country needs to build upon its recent solar power surge. It needs to ramp up renewable generation capacity to meet its growing demand, build enough storage capacity to meet peak demand and develop infrastructure to facilitate grid integration. These are all big challenges but they need to be addressed for India to achieve its 500GW non-fossil capacity by 2030 and ensure its coal-fired generation is closer to peaking.

Change in 2022

In 2022, India’s power sector emissions rose by 6.4% (+70 million tonnes of CO2) compared to 2021. India’s year-on-year change in power sector emissions was much higher than its peer countries in the G20, including China (+1.6%). The emissions increase can be attributed to a number of factors, including a rise in electricity demand, and a large increase in coal generation.

Up by 7.2%, (+124 TWh), India’s power demand increase outpaced its average annual demand growth rate in the last decade (+5.7%) amid an economic rebound from the Covid-19 pandemic. This was also three times the global increase of 2.5%. 

Coal generation saw the largest absolute increase among generation sources, rising by 7.2% (+92 TWh), which met 74% of the country’s demand increase. The share of coal in India’s power remained at 74%, showing no change since 2021. On the other hand, gas generation dropped by 22% (-14 TWh), reducing the share of gas to its lowest level in the last two decades.

While solar generation showed a remarkable increase of 39% (+27 TWh), growth in wind power was weaker at 2.9% (+2 TWh). Rise in wind and solar generation was only enough to meet a quarter of the increase in demand. Other clean sources showed a moderate increase, including hydro (+8.9%, +14 TWh), nuclear (+5.4%, 2.4 TWh) and bioenergy (+2.9%, +1 TWh).

 

Long-term trend

To fuel rapid economic growth, India’s demand has more than tripled in the last two decades, from just 573 TWh in 2000 to 1,836 TWh in 2022. To meet this rising demand, coal generation jumped to 1,363 TWh, three and a half times higher than it was in 2000. As a result, India’s power sector emissions increased 214% in comparison to 2000 (+792 MtCO2). 

However, thanks to solar and wind deployment in the last decade, India’s power sector emissions intensity fell slightly to 632 gCO2/kWh, below the level in 2000 (648 gCO2/kWh). 

Wind and solar, as well as other low carbon sources are not yet growing fast enough to meet rapidly growing electricity demand, leading to continuously rising power sector emissions. Renewables are, however, rapidly increasing. In 2000, wind and solar accounted for only 0.3% of India’s power generation, jumping to 9% in 2022. The growth in wind and solar power has been particularly high since the Paris Agreement in 2015, gaining six percentage points in share through to 2022.

 

Progress towards net zero

To align with the IEA Net Zero Emissions scenario and reach a fully decarbonised power sector by 2040, India must reduce its power sector emissions by 65 million tonnes of CO2 on average every year. Power sector emissions have been rising by 41 million tonnes of CO2 annually since 2015. It is expected that India’s emissions will continue to rise in the near-term, driven by rapid demand growth, but accelerating renewables deployment will eventually lead to emissions peaking and then declining.

At the COP26 held in Glasgow in 2021, India displayed its climate stewardship with its ‘Panchamrit’ commitments, targeting 500 gigawatts of non-fossil electricity capacity by 2030. Achieving these targets will, however, require tackling much stiffer challenges at the national and sub-national levels. According to a recent analysis by Ember and IEEFA, states like Karnataka and Gujarat made the most progress towards clean electricity transition, while others need to ramp up efforts to maximise their renewable energy generation potential.

European Union

Combined, the EU has the world’s fourth most CO2-emitting power sector, responsible for 775 million tonnes of CO2 in 2022, which is 6.2% of the world’s total power sector emissions.

The EU generates 39% (1,102 TWh) of its electricity from fossil fuels; 16% from coal (446 TWh), 20% from gas (556 TWh) and 3.6% from other fossil fuels (99 TWh). Wind and solar now make up 22% (624 TWh) of the electricity mix, with the rest coming from nuclear (22%, 613 TWh), hydro (10%, 282 TWh) and bioenergy (6%, 167 TWh).

Power generation in the EU has an emissions intensity of 277 gCO2/kWh, lower than the global average of 436 gCO2/kWh. However, the EU’s annual demand per capita of 6.3 MWh is higher than the world average of 3.6 MWh. At 1.7 tonnes of CO2, the EU’s per capita emissions from the power sector are just above the global average of 1.6 tonnes.

The EU is a critical region in the global transition to clean power. As the fourth largest power sector emitter, efforts to reduce emissions through the build up of wind, solar and other clean electricity sources will have a large impact on the global effort to achieve net zero by 2050.

The EU started the race to renewables early but, as the world accelerates, it cannot afford complacency. In particular, the barriers preventing the rapid deployment of onshore wind power must be removed. Europe had an extremely challenging year in 2022 but should now seize the opportunity to double-down on renewables deployment and remain at the forefront of the global transition to a clean and prosperous economy. Europe must lead by example. It has a crucial role to play in supporting emerging economies to build clean power fast enough to outpace rapid demand growth, thus ensuring power sector emissions have peaked.

Change in 2022

In 2022, EU power sector emissions rose by 2.8% (+21 MtCO2) compared to 2021. This is higher than the 1.3% increase in global power sector emissions, and resulted from a historic fall in nuclear and hydro power that was in part replaced by coal and gas, leading to an increase in emissions intensity from 262 to 277 gCO2/kWh.

Since 2010, EU demand has declined by an average of 0.5% per year, but in 2022, demand fell 3% (-85 TWh) even as it increased by 2.5% globally. This was due to mild weather, alongside demand reduction measures driven in part by high electricity prices. 

Hydro power dropped by 19% (-66 TWh) due to hot weather and droughts. At the same time, nuclear generation fell by 16% (-119 TWh) with maintenance and outages of French nuclear causing the largest reductions, along with plant closures in Germany. Wind and solar increased by 8.8% (+34 TWh) and 24% (+40 TWh) respectively, with record generation in a number of EU countries. Combined, wind and solar met 40% (74 TWh) of the 185 TWh shortfall in hydro and nuclear generation. Coal generation increased by 6.4% (+27 TWh), meeting 15% of the hydro and nuclear shortfall. The rest was made up by a fall in electricity demand. Coal’s share in the electricity mix increased by 1.4 percentage points to 16%, but remained at pre-pandemic levels. Gas generation also increased by 0.8% (+4.6 TWh), and its share increased to 19.9% (+0.8 percentage points).

 

Long-term trend

The EU’s demand has grown by just over 6% in the last two decades, from 2,628 TWh in 2000 to 2,794 TWh in 2022. At the same time, the region’s emissions intensity in 2022 (277g CO2 per KWh) was significantly lower than in 2000 (383g CO2 per KWh). This is due to the acceleration of wind and solar deployment since 2010, and despite the decline in nuclear generation since 2000. Emissions fell by 23% (-230 million tonnes of CO2) over the same period.

Since the Paris Agreement in 2015, EU emissions have decreased by 16% (-147 MtCO2). Declines in nuclear and coal have primarily been replaced by gas, which rose by 40% (+160 TWh), but the future is uncertain for gas consumption following Russia’s invasion of Ukraine and the record high price volatility. An increase in wind and solar generation of more than 71% (260 TWh) from 2015 to 2022 prevented a larger rise in fossil generation.

The EU’s transition to wind and solar is happening faster than the global average. Wind and solar now account for 22% of electricity production, up from just 13% in 2015. Globally, the share of wind and solar increased from 4.6% to 12.1% in the same period.

 

Progress towards net zero

The EU needs to achieve a net zero emissions power sector by 2035 as set out by the IEA Net Zero Emissions scenario. Modelling by Ember reveals that the least-cost pathway would see the EU generate 70-80% of electricity from wind and solar, and less than 5% from unabated gas power. 

In the seven years since the Paris Agreement in 2015, emissions have decreased by an average of 20 million tonnes annually. To meet the net zero target, emissions need to fall almost three times as fast from the current 780 million tCO2e, at 60 million tonnes per year.

Since the presentation of the Fit-for-55 package in July 2021, a new energy reality has unfolded across Europe. The EU’s response to the energy crisis, fuelled by the Russian invasion of Ukraine, has turbocharged the green transition with deployment of key clean technologies taking off at previously unprecedented levels. The European Commission’s REPowerEU plan proposed raising the bloc’s 2030 renewable energy target from 40% to 45%, a move overwhelmingly supported by the European Parliament. 

Nations have accelerated the transition to clean power, putting the EU as a region on track for 63% renewable electricity by 2030. Some EU countries are targeting more than 80% renewable electricity by 2030, including Germany and the Netherlands. Ember estimates that 2023 is set for a record decline in fossil fuels. By 2030, according to national plans, just 17% of EU electricity will come from fossil fuels and the majority of the region will have phased out coal. The EU power sector is therefore in a good position to achieve a trajectory aligned with 1.5C.

Japan

Japan has the fifth largest power sector CO2 emissions, responsible for 468 million tonnes of CO2 in 2022. Japan accounts for 3.8% of the total global emissions from electricity generation. 

In 2022, Japan generated 71% of its electricity from fossil fuels: 33% (321 TWh) from coal, 34% (329 TWh) from gas and 3.8% (37 TWh) from other fossil fuels. 

However, clean power development is also progressing. Solar accounted for 10% of Japan’s total generation in 2022 (99 TWh). Wind accounted for only 0.9% (8.6 TWh). The rest came from hydro (7.6%, 74 TWh), nuclear (5.4%, 52 TWh), bioenergy (4.6%, 44 TWh) and other renewables (0.3%, 2.9 TWh). 

Japan’s power sector has an emissions intensity of 484 gCO2/kWh, which is slightly higher than the global average of 436 gCO2/kWh. Its annual demand per capita of 7.8 MWh is twice as high as the world average of 3.6 MWh. At 3.8 tonnes of CO2, Japan’s per capita emissions from the power sector are over twice as high as the global average of 1.6 tonnes of CO2.

As the fifth largest power sector emitter, Japan plays an important part in the global energy transition. While Japan’s reliance on fossil fuels remains high at 71%, solar generation is growing quickly, and the country has recently committed to reopening nuclear plants. Wind power remains underdeveloped, with more efforts needed to decarbonise Japan’s power sector.

As Japan assumes the G7 Presidency this year, it faces quite a challenge on its hands with over two-thirds of its electricity still coming from fossil fuels. This is the highest of any G7 country, at a time when the G7 has made a commitment to a ‘fully or predominantly’ decarbonised power sector by 2035. The G7 will want to push harder on this in Hiroshima in May. Japan has an opportunity to scale up offshore wind to help deliver a true commitment towards clean power by 2035.

Change in 2022

After a decade of falling electricity demand, in 2022, Japan saw the largest demand increase since 2010. With demand up by 1%, this increase was half the rate of the global demand increase of 2.5%. Extreme temperatures in January and heat waves during the summer contributed to this rise, in addition to the economic rebound after the easing of Covid-19 restrictions. 

Japan’s total power sector emissions increased in 2022 for the first time in a decade. Emissions increased by 2.1% (+9.5 million tonnes of CO2), compared to a change in global power sector emissions of +1.3%.

Growth in solar generation of 11% (+10 TWh) was enough to meet and exceed the 9.1 TWh of additional demand. Solar surpassed a 10% share in total generation for the first time. Fossil gas was down by 2.2% (-7.3 TWh), its fifth consecutive year of decline, with its share in power generation falling to 34%. Coal generation rose significantly by 3.1% (+9.7 TWh), largely to cover falls in nuclear generation and hydro. Despite recent policy signals from Japan that it would revive the nuclear industry, nuclear generation was down by 15% (-9.5 TWh) in 2022 due to reduced availability for maintenance. Severe droughts this year also led to a decline of 6.7% (-45 TWh) in hydro generation. Finally, lack of additional capacity deployment and low wind speeds led to a decline in wind generation (-4.4%, -0.4 TWh).

 

Long-term trend

Over the last two decades, Japan’s annual power demand has fallen by 2.1% from 988 TWh in 2000 to 967 TWh in 2022. Japan’s declining demand is in stark contrast to the global trend. Globally, demand is up 90% in 2022 compared to 2000. Despite the decrease in power demand, Japan’s total emissions have increased by 19% in the last two decades, largely due to the closure of nuclear power stations which resulted in higher reliance on fossil fuels. 

Fossil fuels accounted for 71% of the power mix in 2022 compared to 59% two decades ago. In the 2000s, nuclear power reduced Japan’s reliance on fossil fuels, generating 26% of total electricity in 2010. However, this came to a halt in the aftermath of the Fukushima nuclear disaster in 2011. Although nuclear power has seen a comeback in recent years, its share still remains at only 5.4%. As a result, Japan’s power sector emissions intensity increased to 484 gCO2/KWh in 2022 compared to 397 gCO2/kWh in 2000.

Following the Paris Agreement in 2015, Japan has made progress on the development of clean power. Clean power’s share has nearly doubled to 29%. Solar and wind combined now make up 11% of Japan’s electricity generation, almost triple the share in 2015. The rise in clean power has resulted in annual power sector emissions dropping by 16% (-89 million tonnes of CO2) compared to 2015 levels.

 

Progress towards net zero

Japan needs a net zero emissions power sector by 2035, as set out in the IEA Net Zero Emissions scenario, to put it on course to deliver its commitment to economy-wide net zero by 2050. Japan will need power sector emissions to fall by 36 million tonnes annually. This is nearly three times the rate since 2015, with average annual emissions declining by 13 million tonnes of CO2 per year. To meet milestones from the IEA pathway, Japan would also need to increase its renewable targets, currently set at 36-38% by 2030.

In 2022, the G7 – including Japan – committed to a ‘fully or predominantly’ decarbonised power sector by 2035. However, compared to its counterparts Japan is far behind on renewables ambition. If implemented, the Ministry of Economy, Trade and Industry’s (METI) Strategic Energy Plan from October 2021 does see clean power increase as the country seeks to reactivate many of its idled nuclear reactors. However, its focus on ammonia co-firing will likely prove a costly and ineffective way to reduce emissions. More concerningly, this distraction may also slow the transition in Southeast Asia, where a cooperation agreement will see Japan support ASEAN countries to adopt ammonia-coal co-firing.

Russia

Russia has the world’s fifth most CO2-emitting power sector, responsible for 409 million tonnes of CO2 in 2022, or 3.3% of total global emissions from electricity generation.

Russia generates 61% of electricity from fossil fuels: 18% (197 TWh) from coal, 43% (479 TWh) from gas and 0.7% (8.1 TWh) from other fossil fuels. Wind and solar only make up 0.7% (8.3 TWh) of the electricity mix. Hydro (18%, 196 TWh) and nuclear power (20%, 226 TWh) also play a big role.

Russia’s emission intensity of 367 gCO2/kWh is lower than the global average of 436 gCO2/kWh. Annual demand per capita is 7.6 MWh, around twice the world average of 3.6 MWh. At 2.8 tonnes of CO2 per capita, emissions from the power sector in Russia are higher than the global per capita average of 1.6 tonnes.

Change in 2022

In 2022, Russia saw a small rise in electricity demand of 0.8% (+9.1 mtCO2), from 1,093 TWh in 2021 to 1,102 TWh. This was below the global demand change of 2.5% and also lower than Russia’s average demand growth rate of 1.1% for 2010-2021.

Russia’s power sector emissions increased by 2.4% (+9.7 million tonnes of CO2) to 409 million tonnes of CO2, eclipsing the previous record-high set last year. This increase was higher than the global rise in power sector emissions of 1.4%. Russia’s emissions increase outpaced growth in electricity demand, which rose by 0.8% in 2022 (+9.1 TWh). 

Hydro generation fell 8.8% (-19 TWh) compared to 2021 amid drought conditions. To meet higher demand, fossil generation rose, with gas power up 2.7% (+13 TWh) and coal up 2.4% (+4.5 TWh). Nuclear generation also grew a moderate 1.8% (+4 TWh). Wind generation grew 44%, but the relatively low absolute generation meant that only 1.7 TWh was added. Solar’s growth was even lower, increasing by 0.3 TWh (+15%). These changes resulted in only minor shifts in Russia’s electricity mix. The share of gas in the mix increased from 42% to 43%, while the fall in hydro generation reduced its share in the mix from 19% to 18%. Wind and solar were just 0.7% (+0.2 percentage points) of the mix.

 

Long-term trend

Russia’s annual power demand has increased by 34% from 819 TWh in 2000 to 1,102 TWh in 2022. The growth is substantially lower than global demand change over the same period (+90%). Emissions from the power sector in Russia have also grown (+22%) since 2000.

There has been very little change in Russia’s electricity mix over the last two decades. Additional demand has largely been met by increases in gas generation (+37%, +129 TWh), but its share of the electricity mix has remained nearly the same, at 43% (up from 42% in 2000). The role of other electricity sources in the mix also showed little change. As a result, emissions intensity today is just slightly lower (367 gCO2/kWh) compared to 2000 (402 gCO2/kWh).

Similarly, little change has occurred in the years since the Paris Agreement. Wind and solar share has risen from only 0.05% to 0.7%. Russia is being left behind as the global share of wind and solar increased from 4.6% to 12.1% in the same period. Russia’s additional demand combined with the lack of clean power growth since 2015 meant that annual power sector emissions increased by 29 million tonnes.

 

Progress towards net zero

Russia’s power sector emissions need to fall to zero by 2040 from the current 409 million tonnes of CO2 to align with the IEA Net Zero Emissions scenario. For that target, emissions will need to fall by 23 million tonnes per year, reversing the trend since 2015, where emissions have grown an average of 4.1 million tonnes of CO2 per year.

In its 2020 nationally determined contribution, Russia pledged to keep emissions 30% below 1990 level by 2030 using ‘’the maximum possible absorptive capacity of forest and other ecosystems’’. It has not made any commitment to reduce emissions from the power sector.

Russia has a net zero emission target by 2060, which is less ambitious than many other developed economies and insufficient for limiting global heating to 1.5 degrees. 

South Korea

South Korea has the world’s sixth largest power sector CO2 emissions. Responsible for 264 million tonnes of CO2, the country’s power sector accounted for 2.1% of total global emissions from electricity generation in 2022. As one of the most advanced economies in Asia, South Korea has a higher responsibility to mitigate emissions contributing to the climate crisis. However, it is still lagging behind its OECD peers in terms of wind and solar development. In addition, South Korea’s heavy reliance on imported fossil fuels heightens risks related to not only climate but also energy security.

South Korea generated 63% of its electricity from fossil fuels in 2022: 34% from coal (206 TWh), 28% from gas (170 TWh) and 1% from other fossil fuels (6 TWh). Nuclear was the largest clean power source, producing 28% of South Korea’s electricity (169 TWh). Wind and solar accounted for 5.4% (32 TWh) of the electricity mix, with the rest coming from hydro (0.6%, 3.6 TWh) and bioenergy (3.1%, 19 TWh).

South Korea has an emissions intensity of 436 gCO2/kWh, which is identical to the global average. However, the country’s annual demand per capita of 12 MWh is more than three times the world average of 3.6 MWh. Due to high demand for power, South Korea’s per capita emissions from the power sector (5 tonnes of CO2) is triple the global average of 1.6 tonnes of CO2.

Coal generation share hit its all-time low, bringing South Korea’s power sector emission intensity down on par with the global level. This was a sign that decarbonisation is happening in South Korea, though it may be small. While emissions reduction must be accelerated and scaled up, recent downward adjustments in renewable targets are going to have the opposite effect.

Change in 2022

Thanks to the rise in clean power and the fall in fossil fuel generation, South Korea’s power sector emissions fell by 2% (-5.3 million tonnes of CO2) compared to 2021. In contrast, global power sector emissions were up by 1.3%. Consequently, the emissions intensity dropped to a historic low at 436 gCO2 per kWh.

This year’s fall in emissions is noteworthy as it occurred despite a rise in electricity demand of 3.1% (+18 TWh). This was roughly on par with the global demand change of 2.5%. A key driver of the demand increase were extreme temperatures in July, August and December, which led to an all-time high in peak demand.

Coal dropped by 2.1% (-4.4 TWh) and hit a historic low in the electricity mix at 34%. Gas fell by 2.7% (-4.7 TWh) and other fossil fuels by 15% (-1 TWh). The fall in fossil fuel generation can be attributed to rising prices of fossil gas and national policies to curb coal power during seasons of high air pollution

The increase in clean power generation (+14%, +28 TWh) was large enough to meet the entire demand increase (+18 TWh) and make up for the drop in fossil fuels (-10 TWh). Among clean power sources, nuclear saw the largest increase in absolute terms (+18 TWh), up by 12%. Scheduled maintenance of nuclear power was cancelled, meeting the rise in demand while compensating for the fall in coal and gas generation. Solar (+21%, +5.1 TWh) and wind power (+6%, +0.2 TWh) also saw a substantial increase.

 

Long-term trend

South Korea’s power generation emissions intensity in 2022 (436 gCO2/kWh) was slightly lower than it was in 2000 (454 gCO2/kWh), reflecting its long-term trend of declining reliance on fossil fuels. However, across the last two decades clean generation has not grown fast enough to meet its demand increase, resulting in a doubling of power sector emissions to 264 million tonnes of CO2. 

Since 2000, South Korea’s power demand has more than doubled to 607 TWh. To meet this rising demand, fossil fuel generation has also more than doubled over the same period (+217 TWh). Gas generation saw a six-fold increase in the last two decades, tripling its share to 28%. Coal generation nearly doubled in absolute terms, but its share fell to 34%, down by five percentage points compared to 2000. 

Clean power sources have grown at a slower rate than fossil fuels, with the share of clean generation dropping from 39% in 2000 to 37% in 2022. The share of nuclear power showed the largest decline in the fuel mix over that period. It fell by nine percentage points to 28% in 2022, although its absolute generation was up by 63%. 

In 2015, wind and solar accounted for less than 1% of the total generation. Since then, wind and solar have grown to now make up 5.4% of the electricity mix. Still, South Korea’s share of solar and wind is half that of both Japan and the global average, which reached 11% and 12% in 2022 respectively.

 

Progress towards net zero

To be in line with the IEA Net Zero Emissions scenario, South Korea needs to reach a net zero power sector by 2035. This means that South Korea needs to reduce power sector emission by 20 million tonnes of CO2 per year, starting in 2023. However, South Korea has been adding 2 million tonnes of CO2 per year since 2015. The upward trend in emissions increase must be reversed quickly.

Under the Framework Act on Carbon Neutrality and Green Growth for Coping with the Climate Crisis, South Korea has set a target to reduce power sector emissions by 44% in comparison to 2018 levels, reaching 150 MtCO2 by 2030. In March, the government set out a plan to revise its power sector reduction target to 45.9%.

However, clean power targets in South Korea are much lower than what the IEA pathway recommends. In a recent announcement of the 10th Basic Plan of Long-Term Electricity Supply and Demand, South Korea set a target to bring the share of renewable and nuclear power up to 31% and 35% by 2036, respectively. To reach net zero, policy targets for clean power must be increased, along with regulatory and financial support for clean power producers.

Saudi Arabia

2022 electricity data for Saudi Arabia is not yet available. This section will focus on data available for 2021.

Saudi Arabia had the 8th highest emissions from the power sector in 2021. It was responsible for 204 million tonnes of CO2, the equivalent to 1.7% of global power sector emissions.

Saudi Arabia’s electricity is almost entirely generated from fossil fuels (99.8%). Gas generation accounts for 61% of electricity (216 TWh) and oil generates 39% (140 TWh). The country generates no electricity from coal or nuclear power, and has almost no renewable generation. Saudi Arabia generates more electricity from oil than any other country.

Compared to the global average (441 gCO2/kWh), Saudi Arabia has significantly higher emissions intensity of electricity (571 gCO2/kWh), and almost three times the demand per capita (9.9 MWh vs. 3.5 MWh). This means that per capita emissions from the power sector in Saudi Arabia are three and a half times higher than the global average (5.7 tCO2 vs. 1.6 tCO2).

Saudi Arabia has committed to generating 50% of its electricity from renewables by 2030, from less than 0.2% in 2021. So far, implementation has lagged behind initiatives and promises by the Saudi government and the country remains with one of the lowest wind and solar shares among major economies.

Change in 2021

Saudi Arabia’s power sector emissions rose by 5.6% in 2021 (+11 million tonnes of CO2), growing faster than global power sector emissions which remained stable in 2021.

Saudi Arabia’s electricity demand rose by 5.5% (+19 TWh) in 2021, faster than the global increase of 5.9%. This was higher than the country’s average growth rate for 2010-2020 (3.7%).

Gas generation rose by 4.3% (+8.9 TWh), meeting half of the increase in electricity demand. This meant that gas generation set a new record high (216 TWh), rising past the previous high (207 TWh) in 2020. Other fossil generation (mostly oil) also increased significantly by 6.9% (+9.1 TWh). While solar generation increased by almost four times, this still only represented an increase of 0.6 TWh.

 

Long-term trend

Saudi Arabia’s electricity demand has more than doubled in the last two decades, from 139 TWh in 2000 to 356 TWh in 2021. As its electricity generation mix has remained almost entirely fossil-based, its emissions intensity has improved only slightly from 603 gCO2/kWh to 571 gCO2/kWh. The demand increase, combined with few changes in the emissions intensity of the grid, meant that power sector emissions more than doubled from 84 million tonnes of CO2 in 2000 to 204 million tonnes of CO2 in 2021. 

Saudi power sector emissions have remained largely stable, falling by just 0.3% (-0.6 Mt of CO2) from 2015 to 2021. Increases in electricity demand since 2015 were met primarily with gas generation growth (+40%) instead of more carbon intensive oil, which fell by 24%.

In the almost total absence of renewables in the mix, emissions are not yet falling. Solar accounts for 0.2% of Saudi Arabia’s electricity. This is compared to rapid growth elsewhere in the world: from 2015 to 2021 solar and wind more than doubled from 4.6% (1,083 TWh) to 10.4% (2,887 TWh) of global electricity.

 

Progress towards net zero

Saudi Arabia needs to generate all its electricity from clean sources by 2040 to achieve a net zero emissions power sector, per the IEA Net Zero Emissions scenario

Saudi Arabia’s power sector emissions in 2021 were broadly unchanged from 2015. For power sector emissions to fall to zero by 2040 from the current 204 million tonnes of CO2, emissions would need to fall 11 million tonnes per year.

Saudi Arabia has committed to generating 50% of its electricity from renewables by 2030, from near-zero today. This could be a trajectory for 100% clean power by 2040. However, it now needs to rapidly turn commitment into action to make this a reality.

Indonesia

2022 electricity data for Indonesia is not yet available. This section will focus on data available for 2021.

Indonesia had the world’s 9th highest power sector emissions in 2021, at 193 million tonnes of CO2. In 2021, this represented 1.6% of global emissions from the power sector.

Fossil fuels generate 82% of Indonesia’s electricity. The largest contribution comes from coal at 61% (190 TWh) of the total power mix in 2021. Gas generation produced 18% (56 TWh) and other fossil fuels 2.1% (6.7 TWh). Combined, renewables produced just 18% of electricity. Hydro produced 8% (25 TWh) of electricity, and bioenergy 4.9% (15 TWh). Other renewables, mostly geothermal, produced 5.2% (16 TWh). Wind (0.4 TWh) and solar (0.2 TWh) both only contributed 0.1%.

As a consequence, Indonesia’s emissions intensity is one of the highest worldwide, at 623 gCO2/kWh compared to global emissions intensity of 441 gCO2/kWh in 2021. However, its annual demand per capita of 1.1 MWh is only a third of the global average of 3.5 MWh per capita. This means that despite the high emissions intensity, the emissions per capita (0.7 tonnes of CO2) are only half of the global average of 1.6 tonnes of CO2.

Electricity provided 13% of Indonesia’s final energy consumption in 2021, which is expected to increase as the electrification of sectors like transport, heating and industry accelerates.

Despite the slow progress of renewable energy deployment in Indonesia over the past years, recent international support – such as the Asian Development Bank’s Energy Transition Mechanism and the Just Energy Transition Partnership (JETP) – has provided the necessary resources to propel the country’s adoption of renewable energy sources and to phase out coal-fired power plants. With this support, it is now the time for Indonesia to demonstrate its commitment and take the necessary steps to peak power sector emissions by 2030 and fulfil its renewable energy ambitions.

Change in 2021

Indonesia’s electricity demand in 2021 was 5.7% (+17 TWh) higher than in 2020. This was slightly lower than the global demand change in 2021 of 5.9%, and higher than Indonesia’s average demand growth rate between 2010 and 2020 of 2.6%.

As a result of the demand growth and the high share of fossil generation in the mix, Indonesia’s power sector emissions increased by 5.7% (+10 million tonnes of CO2). This was slightly below the global increase of emissions in 2021 of 7%. 

Coal, gas and bioenergy satisfied most of the additional demand. Coal generation increased by 5% (+9.1 TWh) and gas generation grew by 9.7% (+5 TWh). Bioenergy grew by 21% (+2.6 TWh). Hydro only saw a small absolute increase (+1.5%, +0.4 TWh), as did other renewables (+2.2%, +0.3 TWh). Solar generation increased by 12% — a 0.02 TWh increase, given Indonesia’s low levels of solar generation. Wind generation fell slightly by 6.4% (-0.03 TWh).

 

Long-term trend

Indonesia has experienced strong demand growth over the last two decades. Its electricity demand more than tripled since 2000 (+216%, +212 TWh) from just 98 TWh in 2000 to 310 TWh in 2021. In the same period, global demand increased by 86%. Emissions intensity of electricity production increased from 548 gCO2/kWh in 2000 to 623 gCO2/kWh in 2021 due to the increased use of coal power in the electricity mix. As a consequence of demand growth and the higher intensity fuel mix, emissions from the power sector were almost four times larger in 2021 (193 MtCO2) than in 2000 (54 MtCO2).

Since the Paris Agreement in 2015, Indonesia’s power sector emissions have increased by 26% (+39 MtCO2). The country has significantly reduced its use of other fossil fuels (mostly oil) for power generation (-78%, -24 TWh), but increasing coal use since 2015 (+52%, +65 TWh) still dominates the trajectory of the power sector.

Indonesia’s transition to wind and solar lags significantly behind the world average. Only 0.2% of generation came from wind and solar in 2021 (up from 0% in 2015). During the same period, global wind and solar share increased from 4.6% to 10.4%.

 

Progress towards net zero

To reach zero emissions from the power sector by 2040, in line with the IEA Net Zero Emissions scenario, Indonesia’s emissions need to fall 10 million tonnes per year. This is in contrast to an average annual rise in power sector emissions of 6.5 million tonnes that the country has seen since 2015. The continued use of coal to meet new electricity demand and the slow build up of wind and solar are significant hurdles that Indonesia will need to overcome.

In 2022, Indonesia secured a Just Energy Transition Partnership that will provide $20 billion over the next three to five years to accelerate a just energy transition. Analysis by Ember shows that the JETP commitment to cap power sector emissions at 290 million tonnes of CO2 is broadly consistent with the Announced Pledge Scenario from the IEA, which aligns with the government’s target to achieve Net Zero Emissions for all sectors by 2060. However, it falls short of a pathway aligned with the IEA’s more ambitious NZE pathway.

Iran

Iran had the world’s tenth most CO2-emitting power sector, responsible for 183 million tonnes of CO2 in 2022, or 1.5% of total global emissions from electricity generation.

Iran generates around 94% of its electricity from fossil fuels: 79% (294 TWh) from gas, 15% (54 TWh) from other fossil fuels and 0.2% (0.7 TWh) from coal. Hydro now makes up 4.5% (17 TWh) and nuclear 1% (3.5 TWh). Wind and solar make up just 0.5% (1.8 TWh) of the electricity mix.

Iran’s electricity has an emission intensity of 494 gCO2/kWh, higher than the global average of 436 gCO2/kWh. Annual demand per capita is 4.2 MWh, which is also higher than the world average of 3.6 MWh. Per capita emissions in Iran are nearly a third higher than the world average, with 2.1 tonnes of CO2 per capita compared to 1.6 tonnes globally. 

As the 10th largest global power sector emitter, efforts to reduce emissions through the build up of wind, solar and other clean electricity sources can have a large impact on the global effort to achieve net zero by 2050.

Change in 2022

Iran’s electricity demand increased by 4.4% in 2022 (+15.7 TWh). This was significantly higher than the global demand increase of 2.6%, but only slightly higher than Iran’s average demand growth of 4% for 2010-2021.

Due to its heavy reliance on fossil fuels and a rise in demand, Iran’s power sector emissions rose by 3.8% in 2022 (+6.7 million tonnes of CO2), far above the global power sector emissions rise of 1.3%.

Gas generation saw the largest absolute increase, rising 5.7 TWh (+2%). Other fossil fuels saw the largest percentage increase at 12% (+5.6 TWh). Gas and other fossil fuels together met 72% of the increase in demand. Hydro also grew by 12% (+1.7 TWh), meeting 11% of the increase in electricity demand. The remaining increase in demand was met by net imports, which increased by 2.8 TWh.

 

Long-term trend

Iran’s electricity demand has grown by 212% (+251 TWh) in the last two decades, from 119 TWh in 2000 to 370 TWh in 2022. This is considerably faster than the global demand increase of 90% over the same period. Emissions intensity in 2022 (494 gCO2/kWh) was slightly below 2000 levels (535 gCO2/kWh), due to increases in hydro and wind and the introduction of solar into the mix. Because of the majority fossil fuel grid, total annual power sector emissions have increased by 187% (+119 million tonnes of CO2) over the same period, roughly in line with the demand increase.

Since the Paris Agreement in 2015, Iran’s power sector emissions have risen by 29% (+42 million tonnes of CO2). Increased demand since 2015 has primarily been met by gas generation, which rose by 42% (+87 TWh) to meet growing electricity demand. At the same time, hydro grew by 25% (+3.4 TWh) and nuclear grew fractionally by 1.1% (+0.04 TWh), displacing other fossil fuels which fell by 3.5% (-2 TWh) in the same period.

Iran’s transition to wind and solar is significantly slower than the global average. Wind and solar now account for 0.5% of electricity production, up from just 0.05% in 2015. Comparatively, the global share of wind and solar increased from 4.6% to 12.1% in the same period.

 

Progress towards net zero

Iran’s power sector emissions need to fall to zero by 2040 from the current 183 million tonnes of CO2 to align with the IEA Net Zero Emissions scenario. For that target, emissions will need to fall by 10 million tonnes per year, reversing the average annual increase of 6 million tonnes seen since 2015.

Iran has so far not submitted a target date for achieving net zero emissions. Its current electricity mix is dominated by fossil fuels (94%). Although there were plans to add 10 GW of renewable electricity capacity between 2022-2025, the country faces difficulties in accessing finance due to a number of sanctions. According to some experts, this is hindering renewable electricity projects.

Previous Chapter
5: Electricity Source Trends
Next Chapter
Conclusion
Share